Publication: Linear Stability and Instability Patterns in Ion-Sputtered Silicon
Open/View Files
Date
2009
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Madi, Charbel S., H. Bola George, and Michael J. Aziz. Forthcoming. Linear stability and instability patterns in ion-sputtered silicon. Journal of Physics Condensed Matter.
Research Data
Abstract
We study the patterns formed on Ar<sup>+</sup> ion sputtered Si surfaces at room temperature as a function of the control parameters ion energy and incidence angle. We observe the sensitivity of pattern formation to artifacts such as surface contamination and report the procedures we developed to control them. We identify regions in control parameters space where holes, parallel mode ripples and perpendicular mode ripples form, and identify a region where the flat surface is stable. In the vicinity of the boundaries between the stable and pattern forming regions, called bifurcations, we follow the time dependence from exponential amplification to saturation and examine the amplification rate and the wavelength in the exponential amplification regime. The resulting power laws are consistent with the theory of nonequilibrium pattern formation for a Type I (constant-wavelength) bifurcation at low angles and for a Type II (diverging wavelength) bifurcation at high angles. We discuss the failure of all sputter rippling models to adequately describe these aspects of the simplest experimental system studied, consisting of an elemental, isotropic amorphous surface in the simplest evolution regime of linear stabilty.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service