Publication:
Reduction of CM elliptic curves and modular function congruences

Thumbnail Image

Date

2005

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Elkies, Noam D., Ken Ono, and Tonghai Yang. 2005. Reduction of CM elliptic curves and modular function congruences. International Mathematics Research Notices (44): 2695-2707.

Research Data

Abstract

We study congruences of the form F(j(z)) | U(p) = G(j(z)) mod p, where U(p) is the p-th Hecke operator, j is the basic modular invariant 1/q+744+196884q+... for SL2(Z), and F,G are polynomials with integer coefficients. Using the interplay between singular (a.k.a. CM) j-invariants in characteristic zero and supersingular ones in characteristic p, we obtain such congruences in which F is the minimal polynomial of a CM j-invariant, and give a sufficient condition for G to be a constant polynomial in these congruences.

Description

Other Available Sources

Keywords

quadratic forms, singular moduli, half-integral weight

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories