Publication:
Model for Solute Redistribution During Rapid Solidification

Thumbnail Image

Date

2009-05-19T18:54:12Z

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Aziz, Michael J. 1982. Model for solute redistribution during rapid solidification. Journal of Applied Physics 53, no. 2: 1158-1168.

Research Data

Abstract

A microscopic model for impurity uptake at a sharp crystal-liquid interface during alloy solidification is presented in terms of the bulk properties of the liquid and solid phases. The results for stepwise growth and continuous growth at the same interface velocity differ quantitatively but exhibit the same qualitative features. A transition from equilibrium segregation to complete solute trapping occurs as the velocity surpasses the diffusive speed of solute in the liquid. The location of the transition varies little with equilibrium segregation coefficient, and a kinetic limit to solute trapping is found to be quite unlikely. Comparison is made with other models; critical differences are pointed out. Coupled with a growth velocity equation and with macroscopic heat- and solute-diffusion equations, the model forms a complete description of one-dimensional crystal growth. The steady-state solution to this system is indicated for the case of a planar interface. The results are applied to describe regrowth from laser-induced melting. Preliminary comparison with experiment is made. The steady-state solution for thermal and impurity transport is suggested for use whenever detailed computer calculations are unavailable or are unnecessarily involved.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories