Publication:
The Evolution of Modern Eukaryotic Phytoplankton

Thumbnail Image

Date

2004

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Association for the Advancement of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Falkowski, Paul G., Miriam E. Katz, Andrew H. Knoll, Antonietta Quigg, John A. Raven, Oscar Schofield, and F. J. R. Taylor. 2004. The evolution of modern eukaryotic phytoplankton. Science 305, no. 5682: 354-360.

Research Data

Abstract

The community structure and ecological function of contemporary marine ecosystems are critically dependent on eukaryotic phytoplankton. Although numerically inferior to cyanobacteria, these organisms are responsible for the majority of the flux of organic matter to higher trophic levels and the ocean interior. Photosynthetic eukaryotes evolved more than 1.5 billion years ago in the Proterozoic oceans. However, it was not until the Mesozoic Era (251 to 65 million years ago) that the three principal phytoplankton clades that would come to dominate the modern seas rose to ecological prominence. In contrast to their pioneering predecessors, the dinoflagellates, coccolithophores, and diatoms all contain plastids derived from an ancestral red alga by secondary symbiosis. Here we examine the geological, geochemical, and biological processes that contributed to the rise of these three, distantly related, phytoplankton groups.

Description

Keywords

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories