Publication:
A Hydrous Melting and Fractionation Model for Mid-Ocean Ridge Basalts: Application to the Mid-Atlantic Ridge Near the Azores

Thumbnail Image

Date

2004

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Geophysical Union
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Asimow, P.D., J.E. Dixon, and Charles H. Langmuir. 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry Geophysics Geosystems 5(1): Q01E16.

Research Data

Abstract

The major element, trace element, and isotopic composition of mid-ocean ridge basalt glasses affected by the Azores hotspot are strongly correlated with H2O content of the glass. Distinguishing the relative importance of source chemistry and potential temperature in ridge-hotspot interaction therefore requires a comprehensive model that accounts for the effect of H2O in the source on melting behavior and for the effect of H2O in primitive liquids on the fractionation path. We develop such a model by coupling the latest version of the MELTS algorithm to a model for partitioning of water among silicate melts and nominally anhydrous minerals. We find that much of the variation in all major oxides except TiO2 and a significant fraction of the crustal thickness anomaly at the Azores platform are explained by the combined effects on melting and fractionation of up to similar to 700 ppm H2O in the source with only a small thermal anomaly, particularly if there is a small component of buoyantly driven active flow associated with the more H2O-rich melting regimes. An on-axis thermal anomaly of similar to 35 degreesC in potential temperature explains the full crustal thickness increase of similar to 4 km approaching the Azores platform, whereas a greater than or equal to75 degreesC thermal anomaly would be required in the absence of water or active flow. The polybaric hydrous melting and fractionation model allows us to solve for the TiO2, trace element and isotopic composition of the H2O-rich component in a way that self-consistently accounts for the changes in the melting and fractionation regimes resulting from enrichment, although the presence and concentration in the enriched component of elements more compatible than Dy cannot be resolved.

Description

Keywords

information related to geographic region: Atlantic Ocean, marine geology and geophysics, igneous petrology, mineralogy and petrology, plume-ridge interaction, hydrous mantle melting, basalt fractionation, Azores, Mid-Atlantic Ridge, midocean ridge processes

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories