Publication:
Automorphisms of Even Unimodular Lattices and Unramified Salem Numbers

Thumbnail Image

Date

2002

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Gross, Benedict H., and Curtis T. McMullen. 2002. Automorphisms of even unimodular lattices and unramified Salem numbers. Journal of Algebra 257(2): 265-290. Revised 2008.

Research Data

Abstract

In this paper we study the characteristic polynomials \(S(x)=\det(xI−F| II_{p,q})\) of automorphisms of even unimodular lattices with signature \((p,q)\). In particular, we show that any Salem polynomial of degree \(2n\) satisfying \(S(−1)S(1)=(−1)^n\) arises from an automorphism of an indefinite lattice, a result with applications to K3 surfaces.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories