Publication: Gaps in \(\sqrt{n}mod 1\) and Ergodic Theory
Open/View Files
Date
2004
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Duke University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Elkies, Noam D., and Curtis T. McMullen. 2004. Gaps in √ n mod 1 and ergodic theory. Duke Mathematical Journal 123(1): 95-139. Revised 2005.
Research Data
Abstract
Cut the unit circle \(S^1 = \mathbb{R}/\mathbb{Z}\) at the points \(\{\sqrt{1}\}, \{\sqrt{2}\}, . . ., \{\sqrt{N}\}\), where \(\{x\} = x mod 1\), and let \(J_1, . . . , J_N\) denote the complementary intervals, or gaps, that remain. We show that, in contrast to the case of random points (whose gaps are exponentially distributed), the lengths \(\mid J_i\mid/N\) are governed by an explicit piecewise real-analytic distribution \(F(t)dt\) with phase transitions at \(t=\frac{1}{2}\) and \(t=2\). The gap distribution is related to the probability \(p(t)\) that a random unimodular lattice translate \(\Lambda \subset \mathbb{R}^2\) meets a fixed triangle \(S_t\) of area \(t\); in fact \(p^"(t) = -F(t)\). The proof uses ergodic theory on the universal elliptic curve: \(E = (SL_2(\mathbb{R}) ⋉ \mathbb{R}^2) / (SL_2(\mathbb{Z}) ⋉ \mathbb{Z}^2)\)
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service