Publication:
Hausdorff Dimension and Conformal Dynamics II: Geometrically Finite Rational Maps

Thumbnail Image

Date

2000

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Birkhäuser Basel
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

McMullen, Curtis T. 2000. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Commentarii Mathematici Helvetici 75(4): 535–593. Revised 2003.

Research Data

Abstract

This paper investigates several dynamically defined dimensions for rational maps \(f\) on the Riemann sphere, providing a systematic treatment modeled on the theory for Kleinian groups. We begin by defining the radial Julia set \(J_{rad}(f)\), and showing that every rational map satisfies \(H. dimJ_{rad}(f) = \alpha(f)\) where \(\alpha(f)\) is the minimal dimension of an \(f\)-invariant conformal density on the sphere. A rational map \(f\) is geometrically finite if every critical point in the Julia set is preperiodic. In this case we show \(H. dimJ_{rad}(f) = H. dimJ(f) = \delta(f)\), where \(\delta(f)\) is the critical exponent of the Poincar´e series; and \(f\) admits a unique normalized invariant density \(\mu\) of dimension \(\delta(f)\). Now let \(f\) be geometrically finite and suppose \(f_n \rightarrow f\) algebraically, preserving critical relations. When the convergence is horocyclic for each parabolic point of \(f\), we show \(fn\) is geometrically finite for \(n \gg 0\) and \(J(f_n) \rightarrow J(f)\) in the Hausdorff topology. If the convergence is radial, then in addition we show \(H. dim J(f_n) \rightarrow H. dimJ(f).\) We give examples of horocyclic but not radial convergence where \(H. dim J(f_n) \rightarrow 1 > H. dim J(f) = \frac{1}{2} + \epsilon \). We also give a simple demonstration of Shishikura’s result that there exist \(fn(z) = z^2 + c_n \) with \(H. dimJ(f_n) \rightarrow 2\). The proofs employ a new method that reduces the study of parabolic points to the case of elementary Kleinian groups.

Description

Keywords

complex dynamics, iterated rational maps, Julia sets, Hausdorff dimension

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories