Publication:
The Shear-Wave Velocity Structure in the Upper Mantle beneath Eurasia

Thumbnail Image

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Blackwell Scientific Publications
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kustowski, Bogdan, Ekstrom Goran, and Adam M. Dziewonski. 2008. The shear-wave velocity structure in the upper mantle beneath Eurasia. Geophysical Journal International 174(3): 978-992.

Research Data

Abstract

We develop an approach that allows us to invert for the mantle velocity structure within a finely parametrized region as a perturbation with respect to a low-resolution, global tomographic model. We implement this technique to investigate the upper-mantle structure beneath Eurasia and present a new model of shear wave velocity, parametrized laterally using spherical splines with similar to 2.9 degrees spacing in Eurasia and similar to 11.5 degrees spacing elsewhere. The model is obtained from a combined data set of surface wave phase velocities, long-period waveforms and body-wave traveltimes. We identify many features as narrow as few hundred kilometres in diameter, such as subducting slabs in eastern Eurasia and slow-velocity anomalies beneath tectonically active regions. In contrast to regional studies in which these features have been identified, our model encompasses the structure of the entire Eurasian continent. Furthermore, including mantle- and body-wave waveforms helped us constrain structures at depths larger than 250 km, which are poorly resolved in earlier models. We find that up to +9 per cent faster-than-average anomalies within the uppermost similar to 200 km of the mantle beneath cratons and some orogenic regions are separated by a sharp gradient zone from deeper, +1 to +2 per cent anomalies. We speculate that this gradient zone may represent a boundary separating the lithosphere from the continental root, which might be compositionally distinct from the overlying lithosphere and remain stable either due to its compositional buoyancy or due to higher viscosity compared with the suboceanic mantle. Our regional model of anisotropy is not significantly different from the global one.

Description

Other Available Sources

Keywords

Europe, Asia, dynamics of lithosphere and mantle, seismic tomography, surface waves and free oscillations, tomography

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories