Publication:
Learning Generic Prior Models for Visual Computation

Thumbnail Image

Date

1997

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Zhu, Song Chun, and David Bryant Mumford. 1997. Learning generic prior models for visual computation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: June 17 - 19, San Juan. Puerto Rico, ed. IEEE Computer Society, 463-469. Los Alamitos, CA : IEEE Computer Society.

Research Data

Abstract

This paper presents a novel theory for learning generic prior models from a set of observed natural images based on a minimax entropy theory that the authors studied in modeling textures. We start by studying the statistics of natural images including the scale invariant properties, then generic prior models were learnt to duplicate the observed statistics. The learned Gibbs distributions confirm and improve the forms of existing prior models. More interestingly inverted potentials are found to be necessary, and such potentials form patterns and enhance preferred image features. The learned model is compared with existing prior models in experiments of image restoration.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories