Publication:
Prior Learning and Gibbs Reaction-Diffusion

Thumbnail Image

Date

1997

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Zhu, Song Chun, and David Bryant Mumford. 1997. Prior learning and Gibbs reaction-diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(11): 1236-1250.

Research Data

Abstract

This article addresses two important themes in early visual computation: it presents a novel theory for learning the universal statistics of natural images, and, it proposes a general framework of designing reaction-diffusion equations for image processing. We studied the statistics of natural images including the scale invariant properties, then generic prior models were learned to duplicate the observed statistics, based on minimax entropy theory. The resulting Gibbs distributions have potentials of the form U(I; Λ, S)=Σα=1kΣx,yλ (α)((F(α)*I)(x,y)) with S={F(1) , F(2),...,F(K)} being a set of filters and Λ={λ(1)(),λ(2)(),...,λ (K)()} the potential functions. The learned Gibbs distributions confirm and improve the form of existing prior models such as line-process, but, in contrast to all previous models, inverted potentials were found to be necessary. We find that the partial differential equations given by gradient descent on U(I; Λ, S) are essentially reaction-diffusion equations, where the usual energy terms produce anisotropic diffusion, while the inverted energy terms produce reaction associated with pattern formation, enhancing preferred image features. We illustrate how these models can be used for texture pattern rendering, denoising, image enhancement, and clutter removal by careful choice of both prior and data models of this type, incorporating the appropriate features

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories

Story
Prior Learning and Gibbs Reaction-Diffusion… : DASH Story 2013-02-06
I am constantly searching and sourcing articles. Right now there is a snow storm (I'm in Canada), and I'm at home, some distance from the University of Guelph. There's a paper I very much want to read (on learning in reaction diffusion systems!). Thanks to Open Access, I'm about to read it!