Publication: A multi-modular tensegrity model of an actin stress fiber
Open/View Files
Date
2008
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Luo, Yaozhi, Xian Xu, Tanmay Lele, Sanjay Kumar, and Donald E. Ingber. 2008. A multi-modular tensegrity model of an actin stress fiber. Journal of Biomechanics 41(11): 2379-2387.
Research Data
Abstract
Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on the extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model can also explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors and represent a new handle on multi-scale modeling of living materials.
Description
Other Available Sources
Keywords
cell mechanics, cell structure, computer model, contractility, cytoskeleton, tensegrity
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service