Publication:
Dealing with Limited Overlap in Estimation of Average Treatment Effects

Thumbnail Image

Date

2009

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Crump, Richard K., V. Joseph Hotz, Guido W. Imbens, and Oscar A. Mitnik. 2009. Dealing with limited overlap in estimation of average treatment effects. Biometrika 96(1): 187-199.

Research Data

Abstract

Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions between treatment groups. This lack of overlap can lead to imprecise estimates, and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used ad hoc methods for trimming the sample. We develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely. Under some conditions, the optimal selection rules depend solely on the propensity score. For a wide range of distributions, a good approximation to the optimal rule is provided by the simple rule of thumb to discard all units with estimated propensity scores outside the range [0.1,0.9].

Description

Other Available Sources

Keywords

average treatment effect, causality, treatment effect heterogeneity, overlap, ignorable treatment assignment, propensity score, unconfoundedness

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories