Publication:
Adaptive Algorithms for Sparse Nonlinear Channel Estimation

Thumbnail Image

Date

2009

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kalouptsidis, Nicholas, Gerasimos Mileounis, Behtash Babadi, and Vahid Tarokh. 2009. Adaptive algorithms for sparse nonlinear channel estimation. Paper presented at the 2009 IEEE Workshop on Statistical Signal Processing, Cardiff, Wales, UK.

Research Data

Abstract

In this paper, we consider the estimation of sparse nonlinear communication channels. Transmission over the channels is represented by sparse Volterra models that incorporate the effect of Power Amplifiers. Channel estimation is performed by compressive sensing methods. Efficient algorithms are proposed based on Kalman filtering and Expectation Maximization. Simulation studies confirm that the proposed algorithms achieve significant performance gains in comparison to the conventional non-sparse methods.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories