Publication:
Strategy Abundance in 2×2 Games for Arbitrary Mutation Rates

Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Antal Tibor, Martin A. Nowak, and Arne Traulsen. 2009. Strategy abundance in 2x2 games for arbitrary mutation rates. Journal of Theoretical Biology 257(2): 340-344.

Research Data

Abstract

We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed population means that any two individuals are equally likely to interact. In particular we consider the average abundances of two strategies, A and B, under mutation and selection. The game dynamical interaction between the two strategies is given by the 2×2 payoff matrix [View the MathML source]. It has previously been shown that A is more abundant than B, if a(N-2)+bN>cN+d(N-2). This result has been derived for particular stochastic processes that operate either in the limit of asymptotically small mutation rates or in the limit of weak selection. Here we show that this result holds in fact for a wide class of stochastic birth–death processes for arbitrary mutation rate and for any intensity of selection.

Description

Keywords

evolutionary game theory, finite populations, stochastic effects

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories