Publication: Strategy Abundance in 2×2 Games for Arbitrary Mutation Rates
Open/View Files
Date
2009
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Antal Tibor, Martin A. Nowak, and Arne Traulsen. 2009. Strategy abundance in 2x2 games for arbitrary mutation rates. Journal of Theoretical Biology 257(2): 340-344.
Research Data
Abstract
We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed population means that any two individuals are equally likely to interact. In particular we consider the average abundances of two strategies, A and B, under mutation and selection. The game dynamical interaction between the two strategies is given by the 2×2 payoff matrix [View the MathML source]. It has previously been shown that A is more abundant than B, if a(N-2)+bN>cN+d(N-2). This result has been derived for particular stochastic processes that operate either in the limit of asymptotically small mutation rates or in the limit of weak selection. Here we show that this result holds in fact for a wide class of stochastic birth–death processes for arbitrary mutation rate and for any intensity of selection.
Description
Other Available Sources
Keywords
evolutionary game theory, finite populations, stochastic effects
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service