Publication:
Iterative Combinatorial Auctions: Theory and Practice

Thumbnail Image

Date

2000

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Association for the Advancement of Artificial Intelligence
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Parkes, David C., and Lyle H. Ungar. 2000. Iterative combinatorial auctions: Theory and practice. In Proceedings: Seventeenth National Conference on Artificial Intelligence (AAAI-2000): Twelfth Innovative Applications of Artificial Intelligence Conference (IAAI-2000), ed. American Association for Artificial Intelligence, 74-81. Menlo Park, C.A.: AAAI Press ; Cambridge, M.A.: MIT Press.

Research Data

Abstract

Combinatorial auctions, which allow agents to bid directly for bundles of resources, are necessary for optimal auction-based solutions to resource allocation problems with agents that have non-additive values for resources, such as distributed scheduling and task assignment problems. We introduce iBundle, the first iterative combinatorial auction that is optimal for a reasonable agent bidding strategy, in this case myopic best-response bidding. Its optimality is proved with a novel connection to primal-dual optimization theory. We demonstrate orders of magnitude performance improvements over the only other known optimal combinatorial auction, the Generalized Vickrey Auction.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories