Publication:
Inverse Shade Trees for Non-Parametric Material Representation and Editing

Thumbnail Image

Date

2006

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lawrence, Jason, Aner Ben-Artzi, Christopher Decoro, Wojciech Matusik, Hanspeter Pfister, Ravi Ramamoorthi, and Szymon Rusinkiewicz. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics 25(3): 735-745.

Research Data

Abstract

Recent progress in the measurement of surface reflectance has created a demand for non-parametric appearance representations that are accurate, compact, and easy to use for rendering. Another crucial goal, which has so far received little attention, is editability: for practical use, we must be able to change both the directional and spatial behavior of surface reflectance (e.g., making one material shinier, another more anisotropic, and changing the spatial "texture maps" indicating where each material appears). We introduce an Inverse Shade Tree framework that provides a general approach to estimating the "leaves" of a user-specified shade tree from high-dimensional measured datasets of appearance. These leaves are sampled 1- and 2-dimensional functions that capture both the directional behavior of individual materials and their spatial mixing patterns. In order to compute these shade trees automatically, we map the problem to matrix factorization and introduce a flexible new algorithm that allows for constraints such as non-negativity, sparsity, and energy conservation. Although we cannot infer every type of shade tree, we demonstrate the ability to reduce multi-gigabyte measured datasets of the Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) into a compact representation that may be edited in real time.

Description

Other Available Sources

Keywords

BRDF, SVBRDF, data-driven, light reflection models, matrix factorization, non-parametric

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories