Publication:
Proposed Triaxial Atomic Force Microscope Contact Free Tweezers for Nanoassembly

Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Brown, Keith A., and Robert M. Westervelt. 2009. Proposed triaxial atomic force microscope contact-free tweezers for nanoassembly. Nanotechnology 20(38): 385302.

Research Data

Abstract

We propose a triaxial atomic force microscope contact-free tweezer (TACT) for the controlled assembly of nanoparticles suspended in a liquid. The TACT overcomes four major challenges faced in nanoassembly, as follows. (1) The TACT can hold and position a single nanoparticle with spatial accuracy smaller than the nanoparticle size (~5 nm). (2) The nanoparticle is held away from the surface of the TACT by negative dielectrophoresis to prevent van der Waals forces from making it stick to the TACT. (3) The TACT holds nanoparticles in a trap that is size-matched to the particle and surrounded by a repulsive region so that it will only trap a single particle at a time. (4) The trap can hold a semiconductor nanoparticle in water with a trapping energy greater than the thermal energy. For example, a 5 nm radius silicon nanoparticle is held with 10 kBT at room temperature. We propose methods for using the TACT as a nanoscale pick-and-place tool to assemble semiconductor quantum dots, biological molecules, semiconductor nanowires, and carbon nanotubes.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories