Publication:
Ynot: Dependent Types for Imperative Programs

Thumbnail Image

Date

2008

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Nanevski, Aleksandar, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal. 2008. Ynot: Dependent types for imperative programs. In Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming: September 20-28, 2008, Victoria, BC, Canada, ed. J. Hook, 229-240. New York, N.Y.: ACM Press.

Research Data

Abstract

We describe an axiomatic extension to the Coq proof assistant, that supports writing, reasoning about, and extracting higher-order, dependently-typed programs with side-effects. Coq already includes a powerful functional language that supports dependent types, but that language is limited to pure, total functions. The key contribution of our extension, which we call Ynot, is the added support for computations that may have effects such as non-termination, accessing a mutable store, and throwing/catching exceptions. The axioms of Ynot form a small trusted computing base which has been formally justified in our previous work on Hoare Type Theory (HTT). We show how these axioms can be combined with the powerful type and abstraction mechanisms of Coq to build higher-level reasoning mechanisms which in turn can be used to build realistic, verified software components. To substantiate this claim, we describe here a representative series of modules that implement imperative finite maps, including support for a higher-order (effectful) iterator. The implementations range from simple (e.g., association lists) to complex (e.g., hash tables) but share a common interface which abstracts the implementation details and ensures that the modules properly implement the finite map abstraction.

Description

Keywords

Type Theory, Hoare Logic, Separation Logic, Monads

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories