Publication:
Deaths from Heart Failure: Using Coarsened Exact Matching to Correct Cause-of-Death Statistics

Thumbnail Image

Date

2010

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Stevens, Gretchen A., Gary King, and Kenji Shibuya. 2010. Deaths from heart failure: Using coarsened exact matching to correct cause-of-death statistics. Population Health Metrics 8:6.

Research Data

Abstract

Background: Incomplete information on death certificates makes recorded cause-of-death data less useful for public health monitoring and planning. Certifying physicians sometimes list only the mode of death without indicating the underlying disease or diseases that led to the death. Inconsistent cause-of-death assignment among cardiovascular causes of death is of particular concern. This can prevent valid epidemiologic comparisons across countries and over time. Methods: We propose that coarsened exact matching be used to infer the underlying causes of death where only the mode of death is known. We focus on the case of heart failure in US, Mexican, and Brazilian death records.Results Redistribution algorithms derived using this method assign the largest proportion of heart failure deaths to ischemic heart disease in all three countries (53%, 26%, and 22% respectively), with larger proportions assigned to hypertensive heart disease and diabetes in Mexico and Brazil (16% and 23% vs. 7% for hypertensive heart disease, and 13% and 9% vs. 6% for diabetes). Reassigning these heart failure deaths increases the US ischemic heart disease mortality rate by 6%. Conclusions: The frequency with which physicians list heart failure in the causal chain for various underlying causes of death allows for inference about how physicians use heart failure on the death certificate in different settings. This easy-to-use method has the potential to reduce bias and increase comparability in cause-of-death data, thereby improving the public health utility of death records.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories