Publication: Using Expression and Genotype to Predict Drug Response in Yeast
Open/View Files
Date
2009
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Ruderfer, Douglas M., David C. Roberts, Stuart L. Schreiber, Ethan O. Perlstein, and Leonid Kruglyak. 2009. Using Expression and Genotype to Predict Drug Response in Yeast. PLoS ONE 4(9): e6907.
Research Data
Abstract
Personalized, or genomic, medicine entails tailoring pharmacological therapies according to individual genetic variation at genomic loci encoding proteins in drug-response pathways. It has been previously shown that steady-state mRNA expression can be used to predict the drug response (i.e., sensitivity or resistance) of non-genotyped mammalian cancer cell lines to chemotherapeutic agents. In a real-world setting, clinicians would have access to both steady-state expression levels of patient tissue(s) and a patient's genotypic profile, and yet the predictive power of transcripts versus markers is not well understood. We have previously shown that a collection of genotyped and expression-profiled yeast strains can provide a model for personalized medicine. Here we compare the predictive power of 6,229 steady-state mRNA transcript levels and 2,894 genotyped markers using a pattern recognition algorithm. We were able to predict with over 70% accuracy the drug sensitivity of 104 individual genotyped yeast strains derived from a cross between a laboratory strain and a wild isolate. We observe that, independently of drug mechanism of action, both transcripts and markers can accurately predict drug response. Marker-based prediction is usually more accurate than transcript-based prediction, likely reflecting the genetic determination of gene expression in this cross.
Description
Other Available Sources
Keywords
genetics and genomics, comparative genomics, complex traits, disease models, functional genomics, gene expression, pharmacogenomics
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service