Publication: Quantum Hall Conductance of Two-Terminal Graphene Devices
Open/View Files
Date
2009
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Williams, James R., Dmitry A. Abanin, Leonardo DiCarlo, Leonid S. Levitov, and Charles M. Marcus. 2009. Quantum Hall conductance of two-terminal graphene devices. Physical Review B 80(045408).
Research Data
Abstract
Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, bilayer, and gapped samples to be distinguished. In particular, we analyze the distortions of quantum Hall plateaus and the conductance peaks and dips at the charge-neutrality point, which can be used to identify the incompressible densities. These results are compared to recent theory and possible origins of the discrepancy are discussed.
Description
Other Available Sources
Keywords
bilayer graphene, Berrys phase
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service