Publication: Directly Probing the Mechanical Properties of the Spindle and Its Matrix
Open/View Files
Date
2010
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Rockefeller University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Gatlin, Jesse C., Alexandre Matov, Gaudenz Danuser, Timothy J. Mitchison, and Edward D. Salmon. 2010. Directly probing the mechanical properties of the spindle and its matrix. The Journal of Cell Biology 188(4): 481-489.
Research Data
Abstract
Several recent models for spindle length regulation propose an elastic pole to pole spindle matrix that is sufficiently strong to bear or antagonize forces generated by microtubules and microtubule motors. We tested this hypothesis using microneedles to skewer metaphase spindles in Xenopus laevis egg extracts. Microneedle tips inserted into a spindle just outside the metaphase plate resulted in spindle movement along the interpolar axis at a velocity slightly slower than microtubule poleward flux, bringing the nearest pole toward the needle. Spindle velocity decreased near the pole, which often split apart slowly, eventually letting the spindle move completely off the needle. When two needles were inserted on either side of the metaphase plate and rapidly moved apart, there was minimal spindle deformation until they reached the poles. In contrast, needle separation in the equatorial direction rapidly increased spindle width as constant length spindle fibers pulled the poles together. These observations indicate that an isotropic spindle matrix does not make a significant mechanical contribution to metaphase spindle length determination.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service