Publication: Geographical Clustering of Prostate Cancer Grade and Stage at Diagnosis, Before and After Adjustment for Risk Factors
Open/View Files
Date
2005
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Klassen, Ann Carroll, Martin Kulldorff, and Frank Curriero. 2005. Geographical clustering of prostate cancer grade and stage at diagnosis, before and after adjustment for risk factors. International Journal of Health Geographics 4: 1.
Research Data
Abstract
Background: Spatial variation in patterns of disease outcomes is often explored with techniques such as cluster detection analysis. In other types of investigations, geographically varying individual or community level characteristics are often used as independent predictors in statistical models which also attempt to explain variation in disease outcomes. However, there is a lack of research which combines geographically referenced exploratory analysis with multilevel models. We used a spatial scan statistic approach, in combination with predicted block group-level disease patterns from multilevel models, to examine geographic variation in prostate cancer grade and stage at diagnosis. Results: We examined data from 20928 Maryland men with incident prostate cancer reported to the Maryland Cancer Registry during 1992–1997. Initial cluster detection analyses, prior to adjustment, indicated that there were four statistically significant clusters of high and low rates of each outcome (later stage at diagnosis and higher histologic grade of tumor) for prostate cancer cases in Maryland during 1992–1997. After adjustment for individual case attributes, including age, race, year of diagnosis, patterns of clusters changed for both outcomes. Additional adjustment for Census block group and county-level socioeconomic measures changed the cluster patterns further. Conclusions: These findings provide evidence that, in locations where adjustment changed patterns of clusters, the adjustment factors may be contributing causes of the original clusters. In addition, clusters identified after adjusting for individual and area-level predictors indicate area of unexplained variation, and merit further small-area investigations.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service