Publication:
Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter

Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Alexandrov, Boian S., Vladimir Gelev, Sang Wook Yoo, Alan R. Bishop, Kim Ø. Rasmussen, and Anny Usheva. 2009. Toward a detailed description of the thermally induced dynamics of the core promoter. PLoS Computational Biology 5(3): e1000313.

Research Data

Abstract

Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories