Publication: Wetting Films on Chemically Modified Surfaces: An X-Ray Study
Date
1991
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Tidswell, I. M., T. A. Rabedeau, Peter S. Pershan, John P. Folkers, M. V. Baker, and George M. Whitesides. 1991. Wetting films on chemically modified surfaces: An x-ray study. Physical Review B 44(19): 10869-10879.
Research Data
Abstract
The wetting of silicon wafers and silicon wafers coated with alkylsiloxane monolayers by saturated vapors of cyclohexane and methanol were studied using x-ray specular reflection. Differentially heating the substrate surface relative to the temperature of a liquid reservoir was used to probe the disjoining pressure as a function of the film thickness and surface chemistry. Uncoated silicon wafers wet completely. The variations in film thickness with \(\Delta\)T are explained exclusively in terms of the nonretarded van der Waals forces for films 10–120 Å thick. Wafers coated with methyl terminated alkylsiloxane monolayers wet incompletely, with a microscopic film 1–3 Å thick adsorbing on the surface. Changing the alkylsiloxane terminal group from -CH\(_3\) to -CH\(_2\)OH converts the surface from incompletely to completely wet. Surfaces coated with partial monolayers of methyl terminated alkylsiloxane of greater than 50% coverage are incompletely wet by cyclohexane, with the monolayers ‘‘swelling’’ to a thickness close to that of fully extended alkane chains through incorporation of cyclohexane into the film structure. The data are consistent with a first-order transition to complete wetting upon reduction of the alkylsiloxane coverage below approximately 50%. The importance of the surface atomic layer in the promotion or suppression of complete wetting is explained in the context of van der Waals forces.
Description
Other Available Sources
Keywords
Terms of Use
Metadata Only