Publication:
Recurrent Chromosomal Copy Number Alterations in Sporadic Chordomas

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Le, Long Phi, G. Petur Nielsen, Andrew Eric Rosenberg, Dafydd Thomas, Julie M. Batten, Vikram Deshpande, Joseph Schwab, Zhenfeng Duan, Ramnik J. Xavier, Francis J. Hornicek, and A. John Iafrate. 2011. Recurrent chromosomal copy number alterations in sporadic chordomas. PLoS ONE 6(5): e18846.

Research Data

Abstract

The molecular events in chordoma pathogenesis have not been fully delineated, particularly with respect to copy number changes. Understanding copy number alterations in chordoma may reveal critical disease mechanisms that could be exploited for tumor classification and therapy. We report the copy number analysis of 21 sporadic chordomas using array comparative genomic hybridization (CGH). Recurrent copy changes were further evaluated with immunohistochemistry, methylation specific PCR, and quantitative real-time PCR. Similar to previous findings, large copy number losses, involving chromosomes 1p, 3, 4, 9, 10, 13, 14, and 18, were more common than copy number gains. Loss of CDKN2A with or without loss of CDKN2B on 9p21.3 was observed in 16/20 (80%) unique cases of which six (30%) showed homozygous deletions ranging from 76 kilobases to 4.7 megabases. One copy loss of the 10q23.31 region which encodes PTEN was found in 16/20 (80%) cases. Loss of CDKN2A and PTEN expression in the majority of cases was not attributed to promoter methylation. Our sporadic chordoma cases did not show hotspot point mutations in some common cancer gene targets. Moreover, most of these sporadic tumors are not associated with T (brachyury) duplication or amplification. Deficiency of CDKN2A and PTEN expression, although shared across many other different types of tumors, likely represents a key aspect of chordoma pathogenesis. Sporadic chordomas may rely on mechanisms other than copy number gain if they indeed exploit T/ brachyury for proliferation.

Description

Keywords

biology, computational biology, microarrays, genomics, chromosome biology, medicine, clinical genetics, chromosomal disorders, diagnostic medicine, pathology, general pathology, molecular pathology, oncology, cancer risk factors, genetic causes of cancer, cancers and neoplasms, bone and soft tissue sarcomas, basic cancer research

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories