Publication: Relation of Microvascular Dysfunction to Exercise Capacity and Symptoms in Patients With Severe Aortic Stenosis
Open/View Files
Date
2011
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Steadman, Christopher D., Michael Jerosch-Herold, Benjamin Grundy, Suzanne Rafelt, Leong L. Ng, Iain B. Squire, Nilesh J. Samani, and Gerry P. McCann. 2011. Relation of microvascular dysfunction to exercise capacity and symptoms in patients with severe aortic stenosis. Journal of Cardiovascular Magnetic Resonance 13(Suppl 1): O5.
Research Data
Abstract
Objective: The aim of this study was to assess the impact of left ventricular hypertrophy, myocardial fibrosis, myocardial perfusion reserve (MPR) and diastolic dysfunction on objectively measured aerobic exercise capacity (peak VO\(_{2}\)) in severe aortic stenosis (AS). Background: The management of asymptomatic patients with severe AS remains controversial and clinical practice varies. Echocardiographic measures of severity do not discriminate between symptomatic status or predict exercise capacity. The purpose of this study was to investigate the mechanisms contributing to symptom generation and exercise intolerance. This needs to be fully understood to optimise the management of asymptomatic AS. Methods: Patients were prospectively enrolled from a single cardiac surgical centre. Inclusion criteria: age 18-85, isolated severe AS referred for valve replacement. Exclusion criteria: syncope; other moderate/severe valve disease, previous valve surgery, obstructive coronary artery disease (>50% luminal stenosis on invasive angiography), chronic obstructive pulmonary disease, atrial fibrillation, estimated glomerular filtration rate <30mL/min. Investigations and primary outcome measures; cardiac magnetic resonance (CMR) - left ventricular mass index (LVMI), MPR (calculated from absolute myocardial blood flow during adenosine hyperaemia and rest determined by model-independent deconvolution of signal intensity curves with an arterial input function), late gadolinium enhancement (LGE); echocardiography - AS severity, tissue Doppler-derived diastolic function; symptom-limited bicycle ergometer cardiopulmonary exercise testing (CPEX) - peak VO\(_{2}\). Linear regression investigated possible predictors of continuous outcome measures. Stepwise selection methods were used to determine the most important predictors of outcome. Results: Four patients with variable LVMI, LGE and MPR are shown, Figure 1. Univariate analyses and results from the stepwise model selection for peak VO\(_{2}\) are summarised in Table 1. Only MPR was of independent significance in predicting age and sex corrected peak VO\(_{2}\). The relationship between peak VO\(_{2}\) and MPR is shown, Figure 2. Patients with higher NYHA Class had lower MPR (p=0.001). Examining predictors of MPR the best stepwise model contained LVMI and LGE category as independent predictors, Table 2. Conclusions: MPR is a novel independent predictor of peak VO\(_{2}\) and is inversely related to NYHA functional class in severe AS. Microvascular dysfunction is determined by a combination of factors including AS severity, LVMI, diastolic perfusion time, myocardial fibrosis and LV filling pressure. Further work is required to determine the clinical significance of microvascular dysfunction in AS.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service