Publication:
Common Variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE Genes Are Associated With Type 2 Diabetes and Impaired Fasting Glucose in a Chinese Han Population

Thumbnail Image

Date

2008

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Diabetes Association
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Wu, Ying, Huaixing Li, Ruth J. F. Loos, Zhijie Yu, Xingwang Ye, Lihua Chen, An Pan, Frank B. Hu, and Xu Lin. 2008. Common Variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE Genes Are Associated With Type 2 Diabetes and Impaired Fasting Glucose in a Chinese Han Population. Diabetes 57(10): 2834-2842.

Research Data

Abstract

OBJECTIVE— Genome-wide association studies have identified common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX/IDE, EXT2, and LOC387761 loci that significantly increase the risk of type 2 diabetes. We aimed to replicate these observations in a population-based cohort of Chinese Hans and examine the associations of these variants with type 2 diabetes and diabetes-related phenotypes. RESEARCH DESIGN AND METHODS— We genotyped 17 single nucleotide polymorhisms (SNPs) in 3,210 unrelated Chinese Hans, including 424 participants with type 2 diabetes, 878 with impaired fasting glucose (IFG), and 1,908 with normal fasting glucose. RESULTS— We confirmed the associations between type 2 diabetes and variants near CDKAL1 (odds ratio 1.49 [95% CI 1.27–1.75]; P = 8.91 × 10−7) and CDKN2A/B (1.31 [1.12–1.54]; P = 1.0 × 10−3). We observed significant association of SNPs in IGF2BP2 (1.17 [1.03–1.32]; P = 0.014) and SLC30A8 (1.12 [1.01–1.25]; P = 0.033) with combined IFG/type 2 diabetes. The SNPs in CDKAL1, IGF2BP2, and SLC30A8 were also associated with impaired β-cell function estimated by homeostasis model assessment of β-cell function. When combined, each additional risk allele from CDKAL1-rs9465871, CDKN2A/B-rs10811661, IGF2BP2-rs4402960, and SLC30A8-rs13266634 increased the risk for type 2 diabetes by 1.24-fold (P = 2.85 × 10−7) or for combined IFG/type 2 diabetes by 1.21-fold (P = 6.31 × 10−11). None of the SNPs in EXT2 or LOC387761 exhibited significant association with type 2 diabetes or IFG. Significant association was observed between the HHEX/IDE SNPs and type 2 diabetes in individuals from Shanghai only (P < 0.013) but not in those from Beijing (P > 0.33). CONCLUSIONS— Our results indicate that in Chinese Hans, common variants in CDKAL1, CDKN2A/B, IGF2BP2, and SLC30A8 loci independently or additively contribute to type 2 diabetes risk, likely mediated through β-cell dysfunction.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories