Publication: Bayesian Synchronous Tree-Substitution Grammar Induction and Its Application to Sentence Compression
Open/View Files
Date
2010
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Association for Computational Linguistics
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Yamangil, Elif and Stuart M. Shieber. 2010. Bayesian synchronous tree-substitution grammar induction and its application to sentence compression. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 11-16 July 2010. Association for Computational Linguistics. 937–947.
Research Data
Abstract
We describe our experiments with training algorithms for tree-to-tree synchronous tree-substitution grammar (STSG) for monolingual translation tasks such as sentence compression and paraphrasing. These translation tasks are characterized by the relative ability to commit to parallel parse trees and availability of word alignments, yet the unavailability of large-scale data, calling for a Bayesian tree-to-tree formalism. We formalize nonparametric Bayesian STSG with epsilon alignment in full generality, and provide a Gibbs sampling algorithm for posterior inference tailored to the task of extractive sentence compression. We achieve improvements against a number of baselines, including expectation maximization and variational Bayes training, illustrating the merits of nonparametric inference over the space of grammars as opposed to sparse parametric inference with a fixed grammar.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service