Publication: Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6
Open/View Files
Date
2009
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Wu, Geng, He Huang, Jose Garcia Abreu, and Xi He. 2009. Inhibition of GSK3 phosphorylation of β-Catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS ONE 4(3).
Research Data
Abstract
The Wnt/β-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated β-catenin protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein 6 (LRP6) is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1), resulting in recruitment of the scaffolding protein Axin to LRP6. As a result, β-catenin phosphorylation by GSK3 is inhibited and β-catenin protein is stabilized. However, how LRP6 phosphorylation and the ensuing LRP6-Axin interaction lead to the inhibition of β-catenin phosphorylation by GSK3 is not fully understood. In this study, we reconstituted Axin-dependent β-catenin phosphorylation by GSK3 and CK1 in vitro using recombinant proteins, and found that the phosphorylated PPPSPXS peptides directly inhibit β-catenin phosphorylation by GSK3 in a sequence and phosphorylation-dependent manner. This inhibitory effect of phosphorylated PPPSPXS motifs is direct and specific for GSK3 phosphorylation of β-catenin at Ser33/Ser37/Thr41 but not for CK1 phosphorylation of β-catenin at Ser45, and is independent of Axin function. We also show that a phosphorylated PPPSPXS peptide is able to activate Wnt/β-catenin signaling and to induce axis duplication in Xenopus embryos, presumably by inhibition of GSK3 in vivo. Based on these observations, we propose a working model that Axin recruitment to the phosphorylated LRP6 places GSK3 in the vicinity of multiple phosphorylated PPPSPXS motifs, which directly inhibit GSK3 phosphorylation of β-catenin. This model provides a possible mechanism to account, in part, for inhibition of β-catenin phosphorylation by Wnt-activated LRP6.
Description
Other Available Sources
Keywords
biochemistry, biophysics, chemical biology
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service