Publication: Supervised Learning-Based tagSNP Selection for Genome-Wide Disease Classifications
Open/View Files
Date
2008
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Liu, Qingzhong, Jack Yang, Zhongxue Chen, Mary Qu Yang, Andrew H. Sung, and Xudong Huang. 2008. Supervised learning-based tagSNP selection for genome-wide disease classifications. BMC Genomics 9(Suppl 1): S6.
Research Data
Abstract
Background: Comprehensive evaluation of common genetic variations through association of single nucleotide polymorphisms (SNPs) with complex human diseases on the genome-wide scale is an active area in human genome research. One of the fundamental questions in a SNP-disease association study is to find an optimal subset of SNPs with predicting power for disease status. To find that subset while reducing study burden in terms of time and costs, one can potentially reconcile information redundancy from associations between SNP markers. Results: We have developed a feature selection method named Supervised Recursive Feature Addition (SRFA). This method combines supervised learning and statistical measures for the chosen candidate features/SNPs to reconcile the redundancy information and, in doing so, improve the classification performance in association studies. Additionally, we have proposed a Support Vector based Recursive Feature Addition (SVRFA) scheme in SNP-disease association analysis. Conclusions: We have proposed using SRFA with different statistical learning classifiers and SVRFA for both SNP selection and disease classification and then applying them to two complex disease data sets. In general, our approaches outperform the well-known feature selection method of Support Vector Machine Recursive Feature Elimination and logic regression-based SNP selection for disease classification in genetic association studies. Our study further indicates that both genetic and environmental variables should be taken into account when doing disease predictions and classifications for the most complex human diseases that have gene-environment interactions.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service