Publication: Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling
Open/View Files
Date
2009
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Aldridge, Bree B., Julio Saez-Rodriguez, Jeremy L. Muhlich, Peter K. Sorger, and Douglas A. Lauffenburger. 2009. Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling. PLoS Computational Biology 5, no. 4: e1000340.
Research Data
Abstract
When modeling cell signaling networks, a balance must be struck between
mechanistic detail and ease of interpretation. In this paper we apply a fuzzy logic framework to the analysis of a large, systematic dataset describing the dynamics of cell signaling downstream of TNF, EGF, and insulin receptors in human colon carcinoma cells. Simulations based on fuzzy logic recapitulate most features of the data and generate several predictions involving pathway crosstalk and regulation. We uncover a relationship between MK2 and ERK pathways that might account for the previously identified pro-survival influence of MK2. We also find unexpected inhibition of IKK following EGF treatment, possibly due to down-regulation of autocrine signaling. More generally, fuzzy logic models are flexible, able to incorporate qualitative and noisy data, and powerful enough to produce quantitative predictions and new biological insights about the operation of signaling networks.
Description
Other Available Sources
Keywords
cell biology, cell signaling, computational biology, systems biology
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service