Publication:
Objective Sequence-Based Subfamily Classifications of Mouse Homeodomains Reflect Their In Vitro DNA-Binding Preferences

Thumbnail Image

Open/View Files

Date

2010

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Santos, Miguel A., Andrei L. Turinsky, Serene Ong, Jennifer Tsai, Michael F. Berger, Gwenael Badis, Shaheynoor Talukder, et al. 2010. Objective sequence-based subfamily classifications of mouse homeodomains reflect their in vitro DNA-binding preferences. Nucleic Acids Research 38, no. 22: 7927-7942.

Research Data

Abstract

Classifying proteins into subgroups with similar molecular function on the basis of sequence is an important step in deriving reliable functional annotations computationally. So far, however, available classification procedures have been evaluated against protein subgroups that are defined by experts using mainly qualitative descriptions of molecular function. Recently, in vitro DNA-binding preferences to all possible 8-nt DNA sequences have been measured for 178 mouse homeodomains using protein-binding microarrays, offering the unprecedented opportunity of evaluating the classification methods against quantitative measures of molecular function. To this end, we automatically derive homeodomain subtypes from the DNA-binding data and independently group the same domains using sequence information alone. We test five sequence-based methods, which use different sequence-similarity measures and algorithms to group sequences. Results show that methods that optimize the classification robustness reflect well the detailed functional specificity revealed by the experimental data. In some of these classifications, 73–83% of the subfamilies exactly correspond to, or are completely contained in, the function-based subtypes. Our findings demonstrate that certain sequence-based classifications are capable of yielding very specific molecular function annotations. The availability of quantitative descriptions of molecular function, such as DNA-binding data, will be a key factor in exploiting this potential in the future.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories