Publication: Theoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3-b:2'3'-f]-thiophene Organic Semiconductor
Open/View Files
Date
2010
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Sánchez-Carrera, Roel S., Sule Atahan, Joshua Schrier, and Alán Aspuru-Guzik. 2010. Journal of Physical Chemistry 114(5): 2334–2340.
Research Data
Abstract
Recently, an optimum mobility of \(8.3 cm^2/(Vs)\) has been measured for single-crystal organic field-effect transistors based on the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene (DNTT) molecule. Here, on the basis of quantum chemistry calculations and molecular dynamics simulations, we investigate the microscopic charge transport parameters of the DNTT molecule and crystal. Our findings confirm that the moderate anisotropy of the hole mobility in DNTT is highly dependent on the presence of in-plane herringbonelike intermolecular interactions with large electronic coupling (transfer integral) values (ca. 0.1 eV). Also, we demonstrate that the π-extended heteroaromatic structure leads to strong electronic coupling interactions among neighboring molecules and to a decrease of the intramolecular reorganization energy. In DNTT, thermal modulations of the electronic couplings at 300 K remain small when compared to those exhibited by the pentacene single crystal. This theoretical study suggests that heteroacenes are a promising route toward high-mobility organic semiconductor materials. Charge transport is discussed in the framework of both band and hopping models.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service