Publication:
ErbB2, EphrinB1, Src Kinase and PTPN13 Signaling Complex Regulates MAP Kinase Signaling in Human Cancers

Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Vermeer, Paola D., Megan Bell, Kimberly Lee, Daniel W. Vermeer, Byrant G. Wieking, Erhan Bilal, Gyan Bhanot, et al. 2012. ErbB2, EphrinB1, Src kinase and PTPN13 signaling complex regulates map kinase signaling in human cancers. PLoS ONE 7(1): e30447.

Research Data

Abstract

In non-cancerous cells, phosphorylated proteins exist transiently, becoming de-phosphorylated by specific phosphatases that terminate propagation of signaling pathways. In cancers, compromised phosphatase activity and/or expression occur and contribute to tumor phenotype. The non-receptor phosphatase, PTPN13, has recently been dubbed a putative tumor suppressor. It decreased expression in breast cancer correlates with decreased overall survival. Here we show that PTPN13 regulates a new signaling complex in breast cancer consisting of ErbB2, Src, and EphrinB1. To our knowledge, this signaling complex has not been previously described. Co-immunoprecipitation and localization studies demonstrate that EphrinB1, a PTPN13 substrate, interacts with ErbB2. In addition, the oncogenic V660E ErbB2 mutation enhances this interaction, while Src kinase mediates EphrinB1 phosphorylation and subsequent MAP Kinase signaling. Decreased PTPN13 function further enhances signaling. The association of oncogene kinases (ErbB2, Src), a signaling transmembrane ligand (EphrinB1) and a phosphatase tumor suppressor (PTPN13) suggest that EphrinB1 may be a relevant therapeutic target in breast cancers harboring ErbB2-activating mutations and decreased PTPN13 expression.

Description

Keywords

biology, biochemistry, proteins, molecular cell biology, signal transduction, mechanisms of signal transduction, signaling cascades, medicine, oncology

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories