Publication:
Hole Spin Relaxation in Ge-Si Core-Shell Nanowire Qubits

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Hu, Yongjie, Ferdinand Kuemmeth, Charles M. Lieber, and Charles M. Marcus. 2012. Hole spin relaxation in Ge-Si core-shell nanowire qubits. Nature Nanotechnology 7(1): 47-50.

Research Data

Abstract

Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces. Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge–Si core–shell nanowire. With fast gating, we measure \(T_1\) spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin–orbit mechanism that is usually masked by hyperfine contributions.

Description

Other Available Sources

Keywords

electronic properties and devices, quantum information

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories