Publication:
Hidden Fermi Surfaces in Compressible States of Gauge-Gravity Duality

Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Huijse, Liza, Subir Sachdev, and Brian Swingle. 2012. Hidden Fermi surfaces in compressible states of gauge-gravity duality. Physical Review B 85(3): 035121.

Research Data

Abstract

General scaling arguments, and the behavior of the thermal entropy density, are shown to lead to an infrared metric holographically representing a compressible state with hidden Fermi surfaces. This metric is characterized by a general dynamic critical exponent, \(z\), and a specific hyperscaling violation exponent, \(\theta\). The same metric exhibits a logarithmic violation of the area law of entanglement entropy, as shown recently by Ogawa et al. [e-print arXiv:1111.1023 (unpublished)]. We study the dependence of the entanglement entropy on the shape of the entangling region(s), on the total charge density, on temperature, and on the presence of additional visible Fermi surfaces of gauge-neutral fermions; for the latter computations, we realize the needed metric in an Einstein-Maxwell-dilaton theory. All our results support the proposal that the holographic theory describes a metallic state with hidden Fermi surfaces of fermions carrying gauge charges of deconfined gauge fields.

Description

Other Available Sources

Keywords

strongly correlated electrons, high energy physics

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories