Publication: Quantum Phase Transitions of Metals in Two Spatial Dimensions: II. Spin density Wave Order
Open/View Files
Date
2010
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Metlitski, Max, and Subir Sachdev. 2010. Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order. Physical Review B 82(7): 075128.
Research Data
Abstract
We present a field-theoretic renormalization group analysis of Abanov and Chubukov’s model of the spin density wave transition in two dimensional metals. We identify the independent field scale and coupling constant renormalizations in a local field theory and argue that the damping constant of spin density wave fluctuations tracks the renormalization of the local couplings. The divergences at two-loop order overdetermine the renormalization constants and are shown to be consistent with our renormalization scheme. We describe the physical consequences of our renormalization-group equations, including the breakdown of Fermi liquid behavior near the “hot spots” on the Fermi surface. In particular, we find that the dynamical critical exponent z receives corrections to its mean-field value z=2. At higher orders in the loop expansion, we find infrared singularities similar to those found by Lee Phys. Rev. B 80 165102 (2009) for the problem of a Fermi surface coupled to a gauge field. A treatment of these singularities implies that an expansion in 1∕N (where N is the number of fermion flavors) fails for the present problem. We also discuss the renormalization of the pairing vertex and find an enhancement which scales as logarithm squared of the energy scale. A similar enhancement is also found for a modulated bond order which is locally an Ising-nematic order.
Description
Other Available Sources
Keywords
strongly correlated electrons, high energy physics
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service