Publication: Imaging Coherent Transport in Graphene (Part I): Mapping Universal Conductance Fluctuations
Open/View Files
Date
2010
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Berezovsky, Jesse, Mario Borunda, Eric J. Heller, and Robert M. Westervelt. 2010. Quantum Science and Technology at the Nanoscale. Special Issue. Nanotechnology 21(27): 274013.
Research Data
Abstract
Graphene provides a fascinating testbed for new physics and exciting opportunities for future applications based on quantum phenomena. To understand the coherent flow of electrons through a graphene device, we employ a nanoscale probe that can access the relevant length scales—the tip of a liquid-He-cooled scanning probe microscope (SPM) capacitively couples to the graphene device below, creating a movable scatterer for electron waves. At sufficiently low temperatures and small size scales, the diffusive transport of electrons through graphene becomes coherent, leading to universal conductance fluctuations (UCF). By scanning the tip over a device, we map these conductance fluctuations versus scatterer position. We find that the conductance is highly sensitive to the tip position, producing \(\delta G \sim e^2/h\) fluctuations when the tip is displaced by a distance comparable to half the Fermi wavelength. These measurements are in good agreement with detailed quantum simulations of the imaging experiment and demonstrate the value of a cooled SPM for probing coherent transport in graphene.
Description
Other Available Sources
Keywords
condensed matter: electrical, magnetic and optical, nanoscale science and low-D systems
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service