Publication: Quantum Critical States and Phase Transitions in the Presence of Non-Equilibrium Noise
Open/View Files
Date
2010
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Torre, Emanuele, Eugene Demler, Thierry Giamarchi, and Ehud Altman. 2010. Quantum critical states and phase transitions in the presence of non-equilibrium noise. Nature Physics 6(10): 806-810.
Research Data
Abstract
Quantum critical points are characterized by scale invariant correlations and correspondingly long-ranged entanglement. As such, they present fascinating examples of quantum states of matter, the study of which has been an important theme in modern physics. Nevertheless very little is known about the fate of quantum criticality under non-equilibrium conditions. In this paper we investigate the effect of external noise sources on quantum critical points. It is natural to expect that noise will have a similar effect to finite temperature, destroying the subtle correlations underlying the quantum critical behavior. Surprisingly we find that in many interesting situations the ubiquitous \(1/f\) noise preserves the critical correlations. The emergent states show intriguing interplay of intrinsic quantum critical and external noise driven fluctuations. We demonstrate this general phenomenon with specific examples in solid state and ultracold atomic systems. Moreover our approach shows that genuine quantum phase transitions can exist even under non equilibrium conditions.
Description
Other Available Sources
Keywords
quantum physics, statistical physics, thermodynamics, nonlinear dynamics
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service