Publication:
A Motif-Independent Metric for DNA Sequence Specificity

Thumbnail Image

Open/View Files

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Pinello, Luca, Giosuè Lo Bosco, Bret Hanlon, and Guo-Cheng Yuan. 2011. A motif-independent metric for DNA sequence specificity. BMC Bioinformatics 12: 408.

Research Data

Abstract

Background: Genome-wide mapping of protein-DNA interactions has been widely used to investigate biological functions of the genome. An important question is to what extent such interactions are regulated at the DNA sequence level. However, current investigation is hampered by the lack of computational methods for systematic evaluating sequence specificity. Results: We present a simple, unbiased quantitative measure for DNA sequence specificity called the Motif Independent Measure (MIM). By analyzing both simulated and real experimental data, we found that the MIM measure can be used to detect sequence specificity independent of presence of transcription factor (TF) binding motifs. We also found that the level of specificity associated with H3K4me1 target sequences is highly cell-type specific and highest in embryonic stem (ES) cells. We predicted H3K4me1 target sequences by using the N- score model and found that the prediction accuracy is indeed high in ES cells.The software to compute the MIM is freely available at: https://github.com/lucapinello/mim. Conclusions: Our method provides a unified framework for quantifying DNA sequence specificity and serves as a guide for development of sequence-based prediction models.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories