Publication: A Unified Phylogeny-based Nomenclature for Histone Variants
Open/View Files
Date
2012
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Talbert, Paul B, Kami Ahmad, Geneviève Almouzni, Juan Ausió, Frederic Berger, Prem L Bhalla, William M Bonner, W Zacheus Cande, Brian P Chadwick, Simon W L Chan, George A M Cross, Liwang Cui, Stefan I Dimitrov, Detlef Doenecke, José M Eirin-López, Martin A Gorovsky, Sandra B Hake, Barbara A Hamkalo, Sarah Holec, Steven E Jacobsen, Kinga Kamieniarz, Saadi Khochbin, Andreas G Ladurner, David Landsman, John A Latham, Benjamin Loppin, Harmit S Malik, William F Marzluff, John R Pehrson, Jan Postberg, Robert Schneider, Mohan B Singh, M Mitchell Smith, Eric Thompson, Maria-Elena Torres-Padilla, David John Tremethick, Bryan M Turner, Jakob Harm Waterborg, Heike Wollmann, Ramesh Yelagandula, Bing Zhu, and Steven Henikoff. 2012. A unified phylogeny-based nomenclature for histone variants. Epigenetics & Chromatin 5: 7.
Research Data
Abstract
Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service