Publication:
Evolution of a Coupled Marine Ice Sheet–Sea Level Model

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Geophysical Union
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Gomez, Natalya Alissa, David Pollard, Jerry X. Mitrovica, Peter John Huybers, and Peter U. Clark. 2012. Evolution of a coupled marine ice sheet–sea level model. Journal of Geophysical Research Earth Surface 117: F01013.

Research Data

Abstract

We investigate the stability of marine ice sheets by coupling a gravitationally self-consistent sea level model valid for a self-gravitating, viscoelastically deforming Earth to a 1-D marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small external forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea level change at the grounding line has an elastic component due to ongoing changes in ice sheet geometry, and a viscous component due to past ice and ocean load changes. When the ice sheet model is forced from steady state, on short timescales (<∼500 years), viscous effects may be ignored and grounding-line migration at a given time will depend on the local bedrock topography and on contemporaneous sea level changes driven by ongoing ice sheet mass flux. On longer timescales, an accurate assessment of the present stability of a marine ice sheet requires knowledge of its past evolution.

Description

Other Available Sources

Keywords

cryosphere, ice sheets, marine ice sheet stability, sea level

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories