Publication:
Towards an Instanton Floer Homology for Tangles

Thumbnail Image

Date

2012-08-10

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Street, Ethan J. 2012. Towards an Instanton Floer Homology for Tangles. Doctoral dissertation, Harvard University.

Research Data

Abstract

In this thesis we investigate the problem of defining an extension of sutured instanton Floer homology to give an instanton invariant for a tangle. We do this in three separate steps. First, we investigate the representation variety of singular flat connections on a punctured Riemann surface \(\Sigma\). Suppose \(\Sigma\) has genus \(g\) and that there are \(n\) punctures. We give formulae for the Betti numbers of the space \(\mathcal{R}_{g,n}\) of flat \(SU(2)\)-connections on \(\Sigma\) with trace 0 holonomy around the punctures. By using a natural extension of the Atiyah-Bott generators for the cohomology ring \(H^*(\mathcal{R}_{g,n})\), we are able to write down a presentation for this ring in the case \(g=0\) of a punctured sphere. This is accomplished by studying the intersections of Poincaré dual submanifolds for the new generators and reducing the calculation to a linear algebra problem involving the symplectic volumes of the representation variety. We then study the related problem of computing the instanton Floer homology for a product link in a product 3-manifold <p>\((Y_g, K_n) := (S^1 \times \Sigma, S^1 \times \{n pts\})\).<\p> It is easy to see that the Floer homology of this pair, as a vector space, is essentially the same as the cohomology of \(\mathcal{R}_{g,n}\), and so we set ourselves to determining a presentation for the natural algebra structure on it in the case \(g = 0\). By leveraging a stable parabolic bundles calculation for \(n = 3\) and an easier version of this Floer homology, \(I _*(Y_0, K_n, u)\), we are able to write down a complete presentation for the Floer homology \(I _*(Y_0, K_n)\) as a ring. We recapitulate somewhat the techniques in \([\boldsymbol{27}]\) in order to do this. Crucially, we deduce that the eigenspace for the top eigenvalue for a natural operator \(\mu^{ orb} (\Sigma)\) on \(I_* (Y_0, K_n)\) is 1-dimensional.Finally, we leverage this 1-dimensional eigenspace to define an instanton tangle invariant THI and several variants by mimicking the de nition of sutured Floer homology SHI in \([\boldsymbol{22}]\). We then prove this invariant enjoys nice properties with respect to concatenation, and prove a nontriviality result which shows that it detects the product tangle in certain cases.

Description

Other Available Sources

Keywords

Floer, mathematics, instanton, knot, parabolic, representation variety

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories