Publication:
Metallic Hydrogen: The Most Powerful Rocket Fuel Yet To Exist

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Silvera, Isaac F. and John W. Cole. 2010. Metallic hydrogen: The most powerful rocket fuel yet to exist. In International Conference on High Pressure Science and Technology, Joint AIRAPT-22 & HPCJ-50 : [proceedings] : 26-31 July 2009, Tokyo, Japan. Journal of Physics Conference Series 215(1): 012194.

Research Data

Abstract

Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, \(I_{sp}\). Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of \(\sim460s\); metallic hydrogen has a theoretical \(I_{sp}\) of 1700s! Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

Description

Other Available Sources

Keywords

quantum gases, liquids and solids, instrumentation and measurement, condensed matter

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories