Publication:
Enriched Basalts at Segment Centers: The Lucky Strike (37°17′N) and Menez Gwen (37°50′N) Segments of the Mid‐Atlantic Ridge

Thumbnail Image

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Geophysical Union
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Gale, Allison, Stephane Escrig, Elizabeth J. Gier, Charles H. Langmuir and Steven L. Goldstein. 2011. Enriched basalts at segment centers: The Lucky Strike (37°17′N) and Menez Gwen (37°50′N) segments of the Mid-Atlantic Ridge. Geochemistry Geophysics Geosystems 12(6): Q06016.

Research Data

Abstract

Basalts from the Mid-Atlantic Ridge change progressively in composition with increasing distance from the Azores platform. Study of the Lucky Strike and Menez Gwen segments reveals much complexity in the gradient. Both segments contain only basalts enriched relative to normal mid-oceanic ridge basalt, but in two distinct groups. Moderately enriched basalts occur throughout the segments, with proximal Menez Gwen enriched relative to Lucky Strike. Highly enriched basalts occur at segment centers. Incompatible element ratios of the highly enriched basalts exceed those of the Azores platform, while isotopic compositions are less enriched. These observations can be explained by a low-degree melt of garnet-bearing Azores mantle added to mantle depleted by previous melt extraction. Melting this “metasomatized” mantle produces lavas that match the enriched samples. The Azores gradient cannot be explained by simple two-component mixing; rather, it reflects recent melt extraction and addition processes related to southward flow of the Azores plume. The Azores gradient also permits tests of segmentation models. Central supply models predict step functions in chemical compositions between segments. Within-segment gradients require vertical supply. Central supply is supported by robust central volcanoes, thicker crust at segment centers, and a step function in isotopes between the segments. The lava diversity at segment centers, however, requires batches of distinct magma that are preserved through melting and melt delivery. Within-segment gradients in moderately incompatible element ratios support a component of multiple supply. The data suggest partial homogenization of magma within a segment and preferential melt focusing to segment centers with some vertical transport.

Description

Keywords

Lucky Strike, mid-ocean ridge basalt, partial melting, trace element geochemistry

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories