Publication:
Total Syntheses of HMP-Y1, Hibarimicinone, and HMP-P1

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Liau, Brian B., Benjamin C. Milgram, Matthew D. Shair. 2012. Total syntheses of HMP-Y1, hibarimicinone, and HMP-P1. Journal of the American Chemical Society 134(40): 16765–16772.

Research Data

Abstract

Total syntheses of HMP-Y1, atrop-HMP-Y1, hibarimicinone, atrop-hibarimicinone, and HMP-P1 are described using a two-directional synthesis strategy. A novel benzyl fluoride Michael–Claisen reaction sequence was developed to construct the complete carbon skeleton of HMP-Y1 and atrop-HMP-Y1 via a symmetrical, two-directional, double annulation. Through efforts to convert HMP-Y1 derivatives to hibarimicinone and HMP-P1, a biomimetic mono-oxidation to desymmetrize protected HMP-Y1 was realized. A two-directional unsymmetrical double annulation and biomimetic etherification were developed to construct the polycyclic and highly-oxidized skeleton of hibarimicinone, atrop-hibarimicinone, and HMP-P1. The use of a racemic biaryl precursor allowed for the synthesis of both hibarimicinone atropisomers and provides the first confirmation of the structure of atrop-hibarimicinone. Additionally, this work documents the first reported full characterization of atrop-hibarimicinone, HMP-Y1, atrop-HMP-Y1, and HMP-P1. Lastly, a pH-dependent rotational barrier about the C2–C2' bond of hibarimicinone was discovered, which provides valuable information necessary to achieve syntheses of the glycosylated congeners of hibarimicinone.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories