Publication:
Multiple-Input Multiple-Output Causal Strategies for Gene Selection

Thumbnail Image

Date

2011

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Bontempi, Gianluca, Benjamin Haibe-Kains, Christine Desmedt, Christos Sotiriou, and John Quackenbush. 2011. Multiple-input multiple-output causal strategies for gene selection. BMC Bioinformatics 12:458.

Research Data

Abstract

Background: Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. Results: We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Conclusions: Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.

Description

Keywords

algorithms, Bayes theorem, breast neoplasms, genetics, female, gene expression profiling, humans, oligonucleotide array sequence analysis, software

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories