Publication: Developing a Multiscale, Multi-Resolution Agent-Based Brain Tumor Model by Graphics Processing Units
Open/View Files
Date
2011
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Zhang, Le, Beini Jiang, Yukun Wu, Costas Strouthos, Phillip Zhe Sun, Jing Su, and Xiaobo Zhou. 2011. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units. Theoretical Biology & Medical Modelling 8:46.
Research Data
Abstract
Multiscale agent-based modeling (MABM) has been widely used to simulate Glioblastoma Multiforme (GBM) and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa). At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU)-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service